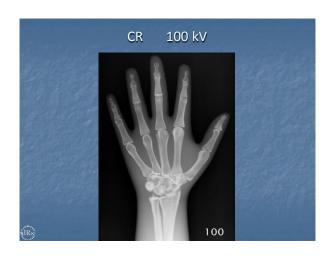
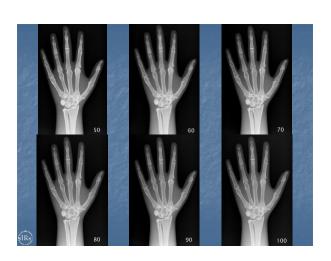


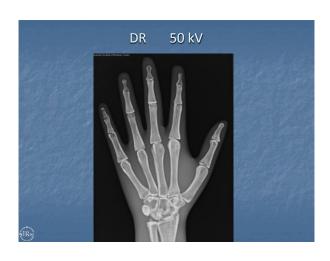
ASRT Best Practices in Digital Radiography

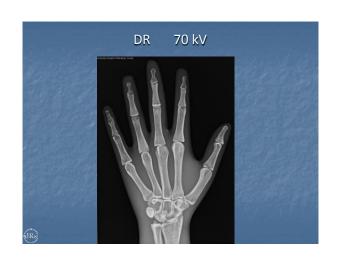
 Radiographers need to take responsibility for understanding and appropriately performing digital radiography procedures because it is their professional duty and an essential component of the radiographers' practice standards and code of ethics. One of the biggest changes with digital radiography is we can use much higher kV

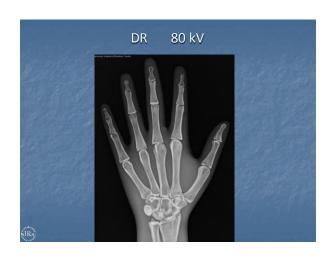
The following slides show a hand phantom exposed from 50 to 100 kV to demonstrate the minute differences visualized on an image using higher kV and lower mAs with both CR and DR.

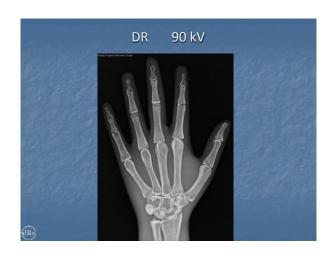


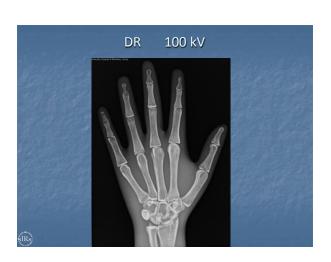


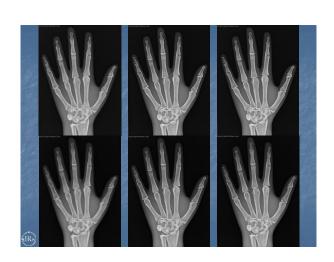












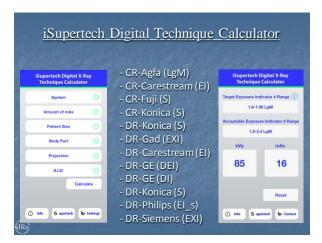
These are the 15-20 kV (higher than film)
digital optimum kVs developed by Barry Burns

Body Part	kV
Chest (Bucky/Grid)	110-125
Chest (Non Grid)	85-90 (105)
Abdomen	85-90
Abdomen (lodine)	75-80
Extremities (Table Top)	65-75
Extremities (Grid)	75-85
Extremities (Bucky)	80-90
AP Spines	80-95
C-Spine Lateral	80-100
T-Spine Lateral	80-100
L-Spine Lateral	80-100
Ribs (Upper and Lower)	80-90
Skull	80-90
BE - (Regular)	110-120
BE - (Air Contrast)	100-110
Pediatric:	
Infant Extremities	50-65
Pediatric Chest (Non Grid)	70-85

From London, Ontario, a peer reviewed research article published for Elsevier's Medical Imaging and Radiation Sciences

- "Examining Practitioners' Assessments of Perceived Aesthetic and Diagnostic Quality of High kVp-Low mAs Pelvis, Chest, Skull, and Hand Phantom"
- Study included 91 practitioners (radiologists, radiology residents, radiographers and radiography students).
- Images taken 20 and 30 kV higher (with mAs compensation) than the "standard" preprogrammed technical factors used at the clinical sites.

Conclusion: You can go up 20 kVp higher with a compensated lowering of mAs and acquire images of diagnostic quality


Of the 4 groups of examiners (radiologists, radiology residents, radiographers and radiography students), who do you believe were the most exacting and hard to please when it came to critiquing the quality of the images?

Size of the Patient – The techniques are of a small, medium and large male

- Small = 120-160 lbs.
- Medium = 160-200 lbs.
- Large = 200-240 lbs.
- Females would be approximately 10 lbs. lighter.

Merrill's Atlas of Radiographic Positioning and Procedures

- In mid 2013 Bruce Long, First Author of Merrill's, hired me to create the first ever digital technique charts for the Merrill's Atlas.
- In it's 50+ year history they have always had film/screen techniques.
- In the 13th edition which was released in February of this year, has almost 250 digital techniques included (half CR and half DR).
- Each technique also has the ESE Dose.

Differences of the Least mAs to 100% More mAs technique charts

- The Least mAs chart uses the smallest mAs of all the charts (least dose to patient, most chance of noise).
- The 33% More mAs chart uses 33% more mAs/dose than the Least mAs chart.
- The 66% More mAs chart uses 66% more mAs/dose than the Least mAs chart.
- The 100% More mAs chart uses 100% (double) more mAs/dose than the Least mAs chart.

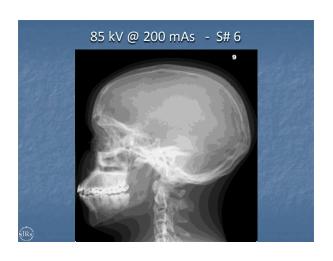
How to use these four charts

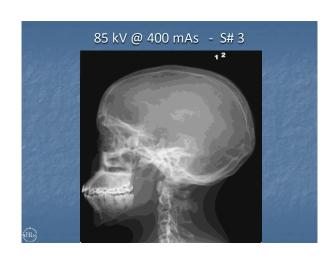
- Begin with the "100% More mAs" because this has the least chance of noise.
- If you have a diagnostic image and the El numbers show you can use less mAs, go to the "66% More mAs" chart.
- If again you have a diagnostic image and the El numbers show you can use less mAs, go to the "33% More mAs" chart.
- Finally, if you have a diagnostic image and the El numbers show you can still drop the mAs, go to the "Least mAs" chart.

Difference between all charts e Between All Technique Charts (in Speed

Differer	nce Bety	ween All	l Techn	ique C	harts (i	in Spe	ed and	mAs)
DR Cesium Least mAs	DR Cesium 33% More	DR Cesium 66% More	DR Cesium 100% More	DR Gado- linium	CR Least mAs	CR 33% More	CR 66% More	CR 100% More
600 Speed	500 Speed	400 Speed	300 Speed	450 Speed	450 Speed	375 Speed	300 Speed	225 Speed
10 mAs	13.3 mAs	16.6 mAs	20 mAs	15 mAs	15 mAs	20 mAs	25 mAs	30 mAs

Here is how much dose you save your patient when you increase the kV and decrease the mAs at a 72" SID.


			Rac	diation	Dose S	aved	
SID	kV	mAs	ESE Dose (mR)	Radiation Saved (%)	50% EI Decrease (mAs)	50% EI Dose (mR)	Total Dose Reduction (%)
		1			1		
72"	70	20	33.0				
72"	81	10	22.1	33.0%	5.0	11.1	66.5%
72"	85	8	19.4	41.3%	4.0	9.7	70.7%
72"	90	6.3	17.0	48.5%	3.2	8.5	74.2%
72"	96	4	12.2	63.1%	2.0	6.1	81.6%

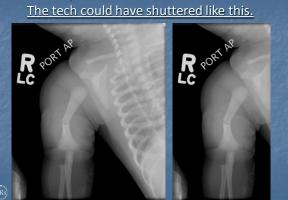

It is *impossible* to prove you used the ideal technique if your only gauge is the finished image contrast and density.


In other words, your eyes can only see mottle and burn, but can't tell what is the perfect technique.

How much can you overexpose for CR and DR?

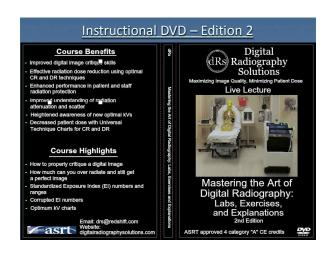
- For all CR (except Agfa) you can use a minimum of 50 times, and probably closer to 100 times, too much mAs and have a perfectly diagnostic/passable image.
- For most DR you can use about 10-15 times too much mAs.

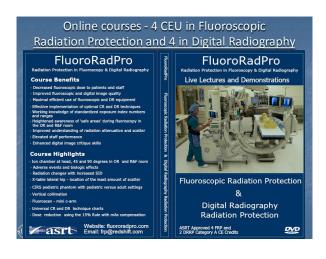
Critiquing digital images

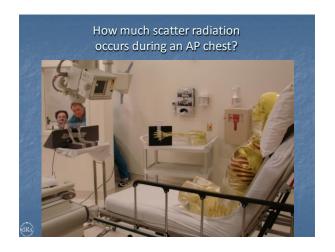

- The El numbers are the number 1 way to critique
- You should definitely use the magnification mode to check for noise and burn.
- You should always be able to Level and Window and make your image look well penetrated and

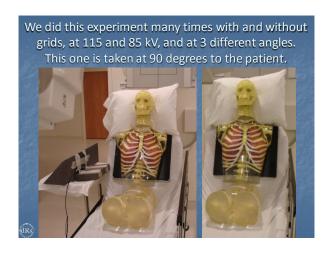
Post collimation (shuttering)

- All radiologists are legally responsible for everything that is on the original image.
- To use post collimation you must show a border of white or pure black to prove you did not crop out any anatomy.

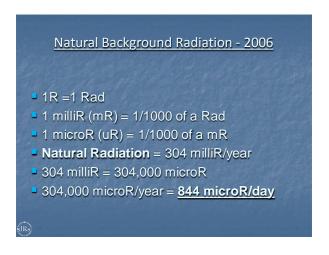


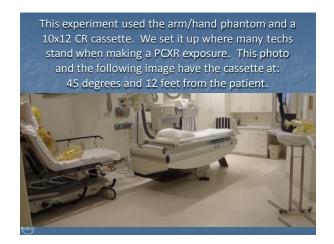

Here's a portable humerus on a newborn. The tech could have shuttered like this.

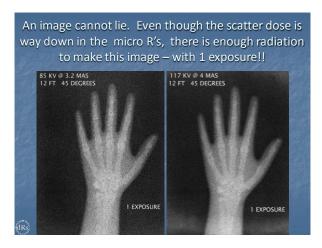


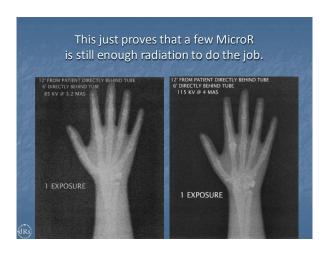

ASRT Best Practices in Digital Radiography Collimation and Electronic Masking

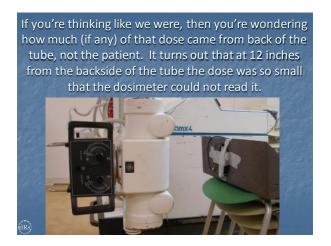
A best practice in digital radiography is to collimate the x-ray beam to the anatomic area appropriate for the procedure. Electronic masking to improve image viewing conditions should be applied in a manner that demonstrates the actual exposure field edge to document appropriate collimation. Masking must not be applied over anatomy that was contained in the exposure field at the time of image acquisition

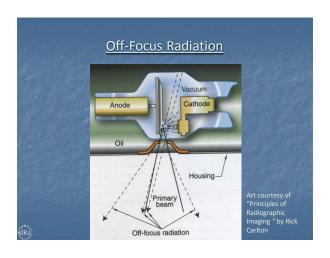


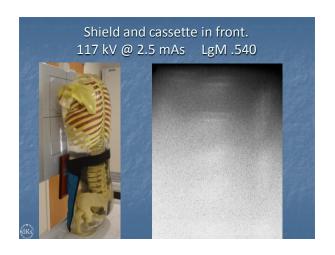


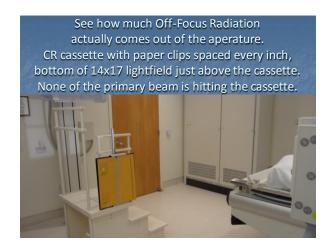


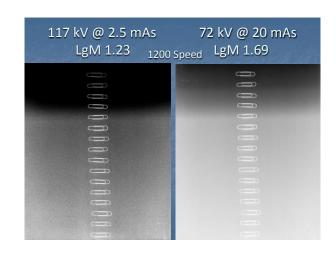


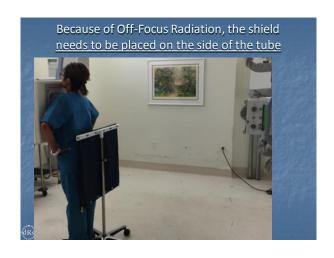

	85	@ 3.	2	а	n	d		115@	04		
Dose	expos	ure du	e to so	atter		Dose exposure due to scatter					
from Portable Chest Xrays						from Portable Chest Xravs					
Angle of Chamber		Dose #1	Dose #2	Average Dose	8	Angle of Chamber	Distance	Dose #1	Dose #2	Average Dose	
(Deg)	(ft)		(microR)	(microR)		(Deg)	(ft)	(microR)	(microR)	(microR)	
90	1	96.0 42.7	94.6 42.0	95.3 42.4		90 90	1 2	316.0 125.8	320.0 127.2	318.0 126.5	
90	2	21.1	42.0 22.0	21.6	1	90	3	68.3	67.6	68.0	
90	4	13.3	12.7	13.0		90	4	42.2	41.0	41.6	
90	5	10.6	9.0	9.8	1	90	5	27.1	28.3	27.7	
90	6	6.9	6.1	6.5		90	6	19.7	19.7	19.7	
45	1	195.5	196.2	195.9		45	1	744.0	778.0	761.0	
45 45	2	79.3 38.3	80.7 39.2	80.0 38.8		45 45	2	295.0 150.7	295.0 151.2	295.0 151.0	
45 45	4	38.3 24.3	23.8	38.8 24.1		45 45	3	98.3	151.2 97.6	151.0 98.0	
45	5	16.2	17.9	17.1		45	5	66.2	65.2	65.7	
45	6	11.6	12.0	11.8		45	6	48.6	47.4	48.0	
45	7	9.4	9.1	9.3		45	7	33.6	32.7	33.2	
45	8	7.1	6.4	6.8		45	8	27.6	27.5	27.6	
0	6	34.0	33.1	33.6		0	6	76.0	75.1	75.6	
0	7 8	24.5 17.4	23.0 16.0	23.8 16.7		0	7	50.5	51.8	51.2	
0	9	17.4	16.0	16.7		0	8	39.3 32.3	39.8 31.9	39.6 32.1	
0	10	10.5	11.6	11.1		0	10	25.4	27.0	32.1 26.2	
ő	11	8.4	8.9	8.7		ő	11	22.4	21.8	22.1	
ō	12	6.3	7.5	6.9		ŏ	12	17.0	16.9	17.0	
0	13	5.3	6.4	5.9		0	13	14.3	14.4	14.4	
						0	14	12.6	12.5	12.6	
0	15	0.0	0.0	0.0		0	15	10.2	9.9	10.1	
0	12 13 14	6.3 5.3 0.0	7.5 6.4 0.0	6.9 5.9 0.0	-	0	12 13	17.0 14.3	16.9 14.4	17.0 14.4	
ō	16	0.0	0.0	0.0		0	16	8.3	8.2	8.3	



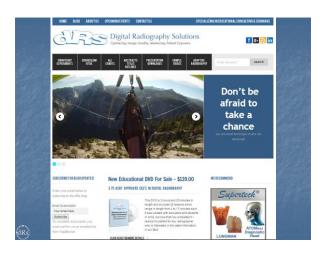









How much more anatomy can be seen on an abdomen when the SID is increased, or 72" (SID) is the new 40" (SID)!!


Peer Reviewed article in the Jan/Feb 2015 issue of Radiologic Technology, it was proven that increasing SID will decrease patient dose

- Entrance surface dose, including backscatter was reduced by 39% and effective dose by 41% when the SID was increased from 100 cm (40") to 140 cm (55").
- Also the image quality is increased because the magnification and geometric unsharpness are reduced

(dR

